eRoots Analytics

GridCal - Open-source for Modern Power Systems

FERC, July 2025

Why simulate?

Source: IPSA, by TNEI. https://www.ipsa-power.com/a-blueprint-for-power/

Context

Legacy

Companies rely on software built 30+ years ago, with lacking functionalities, integration difficulties, and limited capabilities to tackle modern grids

Blindness

Enterprises connect assets to grids they know very little off. Actionable insights for both planning and operation stages are non-existent

Grid complexity

Renewables, storage, data centers, HVDC systems, among others, create a rapidly changing landscape with greater uncertainty levels

From the micro computer to the super computer

Real time micro PC

GridCal's engine has been used for real time control systems R&D as a lightweight simulation engine.

Scaling as the complexity requires

Supercomputer

GridCal has been used for large scale simulations at the Barcelona Supercomputing Center

One database, many simulations

Power flow

Stochastic power flow

Optimal power flow

Voltage collapse

Short circuit

Investments analysis

RMS dynamic simulation

AC/DC Grid Planning

- AC/DC converter integration
- Current limit enforcement
- Controllable tap changers
- HVDC point-to-point connection
- Remote controls
- PQV buses
- 3000 buses solved in 40 ms
- Quadratic convergence

Optimal Power Flow

- Interior Point Solver for maximum performance
- No external dependencies

Maps

Topology Editing

Map and bus-branch diagrams

Diagram expansion

Substation edits

Line edits

Database Merge

- Differentiable grid model
- Allows seamless version control
- Easy collaboration between teams (like Git)
- Exchange of differential files

Interoperability

Drag & Drop files:

- raw & rawx (PSSe)
- EPC (Power World)
- Matpower
- CIM / CGMES
- Power Factory (dgs)
- Most open source
- Json
- Excel

Model logger

Model debug & fix

- Used at electrical companies & consultancy
- 100+ GitHub forks
- 450+ GitHub stars
- Industrial projects in 4 continents
- 5+ European R+D projects

Roadmap

Conclusions

- Simulations are central to power systems planning and operation
- GridCal offers best-in-class algorithms: power flow, OPF, short-circuits, contingencies, dynamics, etc.
- Distinctive to other tools, GridCal comes with a feature-rich user interface
- Performance and user-friendliness, for both academia and industry, are at the core of GridCal
- Innovation and business models around GridCal are possible

eRoots Analytics

GridCal - Open-source for Modern Power Systems

FERC, July 2025

Josep Fanals i Batllori - jfanals@eroots.tech

